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Abstract

This is the concluding portion of a four-part numerical investigation. The first was limited to the prediction of the

velocity field, a prerequisite for the prediction of convection. The second concerned the prediction of the Nusselt num-

ber for uniform heating on the inner wall only, and the third the prediction of the Nusselt numbers for most of the other

thermal boundary conditions that occur in practice. Herein, generalized predictive equations are presented for all of

these conditions. The number of such equations and coefficients is minimized by the use of superposition and general-

ized expressions for the dependence on Re and Pr, and to some extent on the aspect ratio.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This is the fourth and concluding paper on fully

developed turbulent flow and fully developed convection

in concentric circular annuli. In Part I, Kaneda et al. [1],

presented a new, essentially exact, differential model, a

set of numerical solutions, and a set of generalized pre-

dictive equations for the time-averaged velocity distribu-

tion and the mixed-mean velocity. The validity of these

results was confirmed by comparisons with the rather

extensive although widely scattered prior experimental

data and with prior numerically computed values based

on heuristic models. In Part II, Yu et al. [2] extended this
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modeling to convection with uniform heating on the in-

ner wall and an adiabatic outer wall. These conditions

correspond to longitudinally and angularly uniform

electrical resistance heating of the inner wall as well as

to iso-enthalpic counter-current flow through an inner

tube and the annulus with perfect insulation on the outer

wall. Such conditions may be approached in real heat

exchangers away from the entrances.

The validity of this modeling was tested by compari-

son of the numerically computed values of the Nusselt

number with the widely scattered experimental data

and with prior numerically computed values based on

a questionable model. In Part III, Yu et al. [3] extended

the modeling and numerical solutions for most of the

other thermal boundary conditions that result in fully

developed convection. The results for isothermal sur-

faces constitute an idealization of heating by a boiling

fluid and/or cooling by a condensing fluid. The results
ed.
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Nomenclature

ai inner radius of annulus (m)

ao outer radius of annulus (m)

a0 radius of zero shear stress (m)

amax radius of maximum in velocity (m)

a+ dimensionless radius [a(swq)
1/2/l]+

A arbitrary constant

b half-spacing in parallel-plate channel (m)

b+ dimensionless half-spacing [b(swq)
1/2/l]+

B arbitrary constant

c specific heat capacity (J/kg K)

f Fanning friction factor [2sw=qu2m]
h heat transfer coefficient (W/m2 K)

kt eddy conductivity (W/m K)

k thermal conductivity (W/m K)

j radial heat flux density (W/m2)

m arbitrary exponent

n arbitrary exponent

Nu Nusselt number [2h(ao � ai)/k]

Nu0 Nu{Pr = 0}

Nu1 Nu{Pr = Prt}

Nu1 Nu{Pr !1}

Nu01 Nu1{Pr = Prt}

Pr Prandtl number [cl/k]
Prt turbulent Prandtl number

Prðu0v0Þþ 1�ðT 0v0Þþþð Þ
ðT 0v0 Þþþ 1�ðu0v0 Þþþð Þ

� �
r radial coordinate (m)

r+ dimensionless radius [r(swiq)
1/2/l]

R radius ratio [r/a1]

Re Reynolds number [2(a0 � ai)um/l]
T time-averaged temperature (K)

T+ dimensionless temperature [k(qsw)
1/2(Tw �

T)/ljw]
Tm mixed-mean temperature (K)

T 0 fluctuating component of temperature (K)

T 0v0 time-average of product of fluctuating tem-

perature and velocity (K m/s)

ðT 0v0Þþþ
local fraction of radial heat flux density due

to turbulence [qcT 0v0=j]
u axial component of time-averaged velocity

(m/s)

u+ dimensionless axial velocity [u(q/sw1)
1/2]

um mixed-mean axial velocity (m/s)

u 0 fluctuating component of axial velocity (m/s)

u0v0 time-average of product of fluctuating com-

ponents of velocity (m2/s2)

ðu0v0Þþþ
local fraction of shear stress due to turbu-

lence ½�qu0v0=s�

ðu0v0Þþ alternative dimensionless shear stress

½�qu0v0=sw1�
v radial component of time-averaged velocity

(m/s)

v 0 fluctuating component of velocity normal to

wall (m/s)

x arbitrary independent variable

y distance from wall (m)

y+ dimensionless distance from wall

[y(qsw)
1/2/l]

z arbitrary dependent variable; axial coordi-

nate (m)

c [(j/jw1)(sw1/s) � 1]

eo perturbation of Nu0 due to convexity (–)

e1 perturbation of Nu1 due to convexity (–)

g0 perturbation of Nu0 due to Re (–)

g1 perturbation of Nu1 due to Re (–)

l dynamic viscosity (Pa s)

lt eddy dynamic viscosity (Pa s)

q specific density (kg/m3)

s shear stress (Pa)

sw shear stress at wall (Pa)

Subscripts

A adiabatic wall

C uniformly cooled wall

H uniformly heated wall

HA one uniformly heated and one adiabatic

wall

HC one uniformly heated and one uniformly

cooled wall

HH uniformly and equally heated walls

i of the inner wall

m mean value

o of the outer wall

T isothermal wall

TA one isothermal and one adiabatic wall

TT two isothermal walls

w on the wall

w1 based on shear stress on the inner wall

w2 based on shear stress on the outer wall

wm based on mean shear stress on the walls

0 for Pr = 0

1 for Pr = Prt
1 for Pr! 1
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were again validated by comparison with the somewhat

limited experimental data and prior numerically com-

puted values of the Nusselt number. The development
of predictive equations for these other thermal boundary

conditions was deferred to the current presentation in

order to take advantage of the generalizations that are



B. Yu et al. / International Journal of Heat and Mass Transfer 48 (2005) 3057–3072 3059
described herein. At the loss of some convenience, but in

the interests of economy, the analytical developments of

Parts I—III are not reproduced herein.

The numerically computed values of Nu presented in

Parts II and III constitute a sufficient data-base to con-

struct generalized predictive equations for almost all of

the thermal boundary conditions that result in fully

developed convection, a complete range of values of

Pr, a range of values of Re extending from the minimum

for fully turbulent flow to beyond that of any practical

interest, and a range of aspect ratios encompassing all

values that are likely to be encountered in practice.

The only significant missing conditions are for a uniform

temperature on one wall with the other insulated and for

equal uniform temperatures on both walls for annuli of

fractional aspect ratio. Solutions for these latter two

conditions aspect ratios appeared to be possible for frac-

tional aspect ratios using the same methodology as for

round tubes and parallel-plate channels, but they were

not pursued because the computational demands ap-

peared to be excessive relative to the minimal practical

importance of the results.

The primary objective of this final paper is to present

generalized predictive equations for Nu for all of the

conditions for which numerical computations have been

carried out in this overall investigation. A secondary,

but perhaps more important objective has been to exam-

ine the concepts and generalizations that led to the

numerically computed results and the forms for their

representation. Some of these concepts and generaliza-

tions are well known, others are often utilized without

explicit recognition, while some are new. Their identifi-

cation is essential to an understanding of the limitations

of the models, the numerically computed values, and the

predictive equations. This examination might have been

included within Parts I–III, but its implications are more

obvious in their collective aftermath. The term ‘‘predic-

tive’’ herein implies expressions that are not based di-

rectly on experimental data or numerically computed

values as distinguished from ‘‘correlative’’ which implies

their derivation from such values. The new concepts and

generalizations are examined first, and then the resulting

generalized predictive equations.
2. Concepts and generalizations

2.1. New concepts and generalizations with respect to flow

The first generalization relevant to this investigation

is that of fully developed flow, which is usually implied

without recognizing that it is a hypothetical condition,

which is only approached asymptotically. For example,

deviations from this state are to be expected near the en-

trance of all channels, depending in character on the

configuration of the entrance. The implication of fully
developed flow as applied to a heat exchanger is that

the channel is of sufficiently length so that the effects

of flow development are negligible in an overall sense.

The time-averaged equations of conservation are uti-

lized in this and all other investigations of turbulent flow

and convection with the exception of those based on di-

rect numerical simulation (DNS). The validity of the con-

cept of time-averaging has been challenged by some, but

its wide-spread successful application for the prediction

of physical behavior refutes such doubts for all practical

purposes.

The first new concept directly related to this investi-

gation of fully developed turbulent flow and convection

in annuli was the proposal by Churchill and Chen [4] to

model the flow in round tubes, parallel-plate channels,

and concentric circular annuli directly in terms of the lo-

cal turbulent shear stress, as represented by the time-

averaged quantity qu0v0, rather than introduce a heuristic

model such as the eddy viscosity or the mixing length.

Accordingly, they expressed the time-averaged differen-

tial momentum balance for a round tube in terms of

u+, y+, and ðu0v0Þþ � �qðu0v0Þ=sw.
MacLeod [5] postulated that the time-averaged veloc-

ity distribution for a round tube in terms of u+{y+,a+} is

identical to that for a parallel-plate channel in terms of

u+{y+,b+} if a+ = b+. This powerful generalization has

not generally been recognized in a formal sense although

it has occasionally been utilized implicitly. Churchill and

Chan inferred from their differential momentum balance

in terms of ðu0v0Þþ and u+ that the analogy of MacLeod

must apply to ðu0v0Þþ insofar as it is valid for u+. They

examined the presumably best sets of experimental data

for these two dimensionless variables and two geome-

tries and concluded that the analogy and their extension

of it were valid, at least within the scatter of those data.

With the advantage of being able to utilize experi-

mental data for both round tubes and parallel-plate

channels without discrimination, Churchill and Chan

[6] proceeded to construct a correlating equation for

ðu0v0Þþ. In this endeavor they combined theoretically

based asymptotes such as ðu0v0Þþ � ðyþÞ3 near the wall,

that equivalent to the semi-logarithmic distribution for

u+ in the ‘‘turbulent core near the wall’’, and that equiv-

alent to uþc � uþ � 1� y
a

� �2
near the centerline, in terms

of the generalized correlating equation of Churchill and

Usagi [7], which consists of arbitrary power-means of

pairs of the asymptotes. Although these exponents are

empirical, the resulting expression is generally quite

insensitive to their numerical value. Since u+ may be ex-

pressed in terms of ðu0v0Þþ by direct integration of the

differential momentum balance, it follows that a corre-

lating equation for the former can in principle be

obtained from one for the latter. However, this integra-

tion and its result are too complex for practical pur-

poses. On the other hand, successful and coherent

correlating equations in the form of the Churchill–Usagi
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equation are readily constructed for both u+ and uþm
using integrals of the asymptotes for ðu0v0Þþ. The reverse
process was actually used in Part I for annuli because the

experimental data for u+ were considered to be more

reliable than those for ðu0v0Þþ.
At this point in time, Churchill [8] noted that

the alternative dimensionless variable ðu0v0Þþþ �
�qðu0v0Þ=s, which may be interpreted as the fraction of

the local total shear stress due to turbulence, leads to

slightly simpler formulations than ðu0v0Þþ. For example,

it was recognized from this alternative formulation that

the formal double-integral for uþm that follows from the

formal integral for u+ may be integrated by parts to ob-

tain a single integral with the identical integrand,

namely, 1� ðu0v0Þþþ
, although of course with a different

factor outside the integral and a different variable of

integration, namely, R2 and R4, respectively. In retro-

spect, such an integration by parts was possible for for-

mulations in terms of either the eddy viscosity or the

mixing length, but this possibility was apparently never

realized because of the greater associated complexity

of the integral formulations for these latter quantities.

Although the step-wise integration of the differential

model to obtain u+ and uþm proved to be more efficient

computationally than evaluation of these integrals by

quadrature, the integral formulations are invaluable

for the insight they provide concerning the interrelation-

ship between ðu0v0Þþþ
, u+, and uþm.

The correlating equations for these three dimension-

less variables proved to be highly successful in represent-

ing experimental data and numerically computed values

for round tubes and parallel-plate channels for a com-

plete range of values of y+ for a+ and/or b+ > 300, a

lower limit imposed by the incorporation of a

semi-logarithmic regime for u+ in the correlating equa-

tions. These expressions merit the designation ‘‘predic-

tive’’ because they are only indirectly based directly on

experimental data or numerically computed values.

The application of the above concepts, generaliza-

tions, and formulations for annuli proved to be uniquely

advantageous, but at the same time to result in some

complexities not encountered with round tubes and par-

allel-plate channels. As perhaps first proven by Kjell-

ström and Hedberg [9], the eddy viscosity of annuli is

unbounded at one location owing to the finite value of

the turbulent shear stress at the location of the maxi-

mum in the time-averaged velocity, and negative over

an adjacent finite range of the radius. It follows that

all numerical solutions based on the eddy viscosity are

invalid in principle, although they may produce results

of reasonable numerical accuracy owing to insensitivity

to the singularity and negative values. Solutions for flow

and convection in annuli based on large eddy simulation

(LES) may be completely unaffected by the singularity

and negativity insofar as they do not occur in the region

in which the eddy viscosity is utilized, but they are nev-
ertheless subject to error due to the arbitrary expressions

used for the eddy diffusivity and/or wall functions in the

region near the wall. The quantity ðu0v0Þþ is well behaved

for all conditions. The quantity ðu0v0Þþþ
is itself ill-

defined over a short interval but the impact on the com-

puted values of u+ and uþm appears to be minimal. On the

other hand, with the ðu0v0Þþ or ðu0v0Þþþ
models, addi-

tional empiricism beyond that for a round tube or a par-

allel-plate channel is required in the form of correlating

equations for amin, the radial location of the zero in the

total shear stress, and amax, the location of the maximum

in the time-averaged velocity. Kaneda et al. [1] adapted

the predictive equation of Churchill and Chan [6] for u+

in a round tube to devise separate correlating equations

for ðu0v0Þþ for the inner region (ai 6 r 6 amax) and the

outer region (amax 6 r 6 ao) of the annulus, and forced

the values of both ðu0v0Þþ and u+ to match at r = amax.

The numerically computed values for the mixed-mean

velocity revealed a surprising and very powerful general-

ization, namely that the predictive equation for

ðuþmÞwm ¼ ð2=fwmÞ1=2 as a function of Re is invariant for

all practical purposes with respect to the aspect ratio

ai/ao. Fortuitously, this particular friction factor is the

one of primary practical interest in that it is based

implicitly on the pressure gradient, whereas those

based on sw1 and sw2 are applicable only for the indi-

cated wall.

2.2. New and old concepts and generalizations with

respect to the differential energy balance

The concept of a fully developed temperature field in

fully developed flow, and thereby of fully developed con-

vection, is more subtle that that of fully developed flow.

It is usually defined as a close approach to an asymptotic

value of (Tw � T)/(Tw � Tm), or the equivalent, while T

continues to develop radially and longitudinally. Fully

developed convection in fully developed flow is usually

closely approached in a much shorter channel length

than is required for the equivalent approach to fully

developed flow. Hence, if the onset of heating occurs

at the entrance, flow rather than heat transfer is the lim-

iting process with respect to full development.

Churchill [8] proposed by analogy to that for flow, the

expression of the differential energy balance in terms of

T+ = k(qsw)
1/2(Tw � T0)/ljw and ðT 0v0Þþþ ¼ qcðT 0v0Þ=j

rather than introducing the eddy conductivity. The quan-

tity T+, as well as (Tw � T)/(Tw � Tm), attains a fully

developed value for both uniform heating and isothermal

heating of one or both walls. The dimensionless variable

ðT 0v0Þþþ
, which may be interpreted as the local fraction of

the total radial heat flux density due to the turbulent fluc-

tuations, constitutes a completely new approach for tur-

bulent convection in itself. However, ðT 0v0Þþþ
was

promptly replaced by another new variable, namely,

P rt=P r � ðu0v0Þþ þ½1� ðT 0v0Þþ þ�=ðT 0v0Þþ þ½1� ðu0v0Þþ þ�.
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This quantity may be interpreted physically as the ratio

of the transport of momentum by the turbulent fluctua-

tions to that by the molecular motions, all divided by

the analogous ratio for the transport of energy. The sym-

bol Prt and the name turbulent Prandtl number were cho-

sen for this ratio of ratios because of its exact equivalence

to clt/kt, where lt and kt are the eddy viscosity and eddy

conductivity, respectively. However, the new definition

reveals that Prt is completely independent of the heuristic

diffusional origins of lt and kt.

The advantage of expressing the differential energy

balance in terms of Prt/Pr rather than ðT 0v0Þþþ
is two-

fold. Firstly, the variance of ðT 0v0Þþþ
on location and

the rate of flow is mostly subsumed by that of ðu0v0Þþþ
,

an already a known quantity. Secondly, the dependency

of the quantity Prt itself is remarkably constrained.

Abbrecht and Churchill [10] asserted in 1960, on theo-

retical grounds as well as on the basis of their own

experimental data for developing convection, that Prt
is independent of the thermal boundary condition(s)

and geometry, and thereby a function only of ðu0v0Þþþ

and Pr, at least in the turbulent core. This postulate is

one of the most helpful generalization of all those men-

tioned to this point. Although it has apparently never

been formally proven or disproven, nor have its possible

limits of applicability, if any, been established, this inde-

pendence is an implicit in almost all the analyses that

have ever been carried out for turbulent convection.

Furthermore, the dependence of Prt on ðu0v0Þþþ
is at

most second-order as attested by correlations of experi-

mental data such as that of Jischa and Reike [11] for Prt
as a function only of Pr, and in any event the effect of

such a dependence on Nu is negligible as attested by

the comparative numerical calculations by Yu et al.

[12] using correlating equations for Prt that both in-

cluded and omitted a dependence on ðu0v0Þþþ
. This mat-

ter has been given such detailed consideration because it

proves to be critical to the development of the correlat-

ing equations to be presented for Nu.

2.3. Generalization of the dependence of Nu on Pr/Prt

Churchill [8], as well as introducing the dimensionless

quantities ðu0v0Þþþ
and ðT 0v0Þþþ

and expressing Prt/Pr in

terms of only these two quantities, developed asymptotic

integral expressions for Nu0 � Nu{Pr = 0} and Nu1 �
Nu{Pr = Prt}, and an algebraic one for Nu1 �
Nu{Pr !1} as possible components of a correlative

equation for Nu{Re,Pr}. However, before devising such

a correlative equation a better alternative was discov-

ered as follows. In the course of a critical analysis of

the classical analogies between momentum and energy

transfer, Churchill [13], combined the partially alge-

braic, partially numerical, and partially graphical frag-

ments of the analogy of Reichardt [14] to obtain a

single algebraic equation. Churchill et al. [15] subse-
quently recognized that this reformulation could be

interpreted as a simple algebraic combination of Nu1,

Nu1, and Prt/Pr, namely,

1

Nu
¼ Prt

Pr

� �
1

Nu1
þ 1� Prt

Pr

� �
1

Nu1
. ð1Þ

Without this previous development of the detailed

asymptotic formulations for Nu, the identification of

this simplified form of the Reichardt analogy would

probably not have occurred. Eq. (1) may be recognized

to be free of explicit empiricism, but, even so, it is pre-

sumably not exact owing to the several idealizations

made by Reichardt in order to be able to integrate the

combination of the differential momentum and energy

balances in closed form. One of his idealizations was

the afore-discussed postulate of the independence of

Prt from location; the other approximations were purely

mathematical in character. Eq. (1) is applicable only for

PrP Prt by virtue of these latter idealizations, but

Churchill et al. [15] derived an analogue for Pr 6 Prt
in terms of Nu0, Nu1, Prt/Pr, and Nu11 � Nu1fPr ¼
Prtg. This latter term arises from matching the deriva-

tives of the expressions for Pr 6 Prt and Pr P Prt at

Pr = Prt. The expressions for Nu0, Nu1, Nu1, and Nu11
each incorporate a dependence on Re. Hence, Eq. (1)

and its analogue for Pr 6 Prt, predict the dependence

on Re implicitly as well as that on Pr/Prt explicitly.

Eq. (1) and its analogue for Pr 6 Prt are revolution-

ary in concept in that they purport to replace the classi-

cal purely empirical correlating equations of limited

range in the form of products of powers of Re and Pr

with two bilinear algebraic equations with a theoretically

based structure, no explicit empiricism, and, in combina-

tion, all values of Pr and all values of Re in the regime of

fully developed turbulence. These two expressions were

shown graphically to represent numerically computed

values for round tubes and parallel-plate channels for

all values of Pr/Prt, all values of Re in the regime of fully

developed turbulence, and all thermal boundary condi-

tions almost perfectly in visual terms, and certainly far

better than any prior expressions. As an example of their

functional superiority, they predict a point of inflection

in the dependence of Nu on Pr/Prt in the low range of

that variable that is clearly confirmed in retrospect by

experimental data even though it has apparently never

been remarked on, and a second one at moderate values

of Pr/Prt that is obscured by the scatter of experimental

data but whose existence is required by the theoretically

based dependence incorporated in the asymptotes.

Despite this overall success, small numerical discrep-

ancies in the predictions were noted at two particular

values of Pr/Prt. Churchill and Zajic [16] deduced that

these discrepancies were a direct consequence of the

mathematically based idealizations made by Reichardt.

In the process of trying to improve upon these idealiza-

tions they discovered that an analogy of Churchill [17],
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previously under-rated even by its author, when re-

expressed in terms of Nu1, Nu1, and Pr/Prt, accom-

plished that objective. That expression and its analogue

for Pr 6 Prt were presented in Part II in a slightly im-

proved form as obtained by rearrangement.

Direct comparisons of predictions of Nu with exper-

imental data are difficult because of the irregular values

of the several parameters such as Pr, the mode of heat-

ing, and the sign and magnitude of the temperature dif-

ference. Hence, Churchill and Zajic compared the

predictions of their equations as well those of a selection

of the most widely used correlating equations of the past

for Nu in round tubes, including some that share part of

the structure of their own expressions, with a correlating

equation of Churchill [18] that represents the culled data

for small temperature-differences for all conditions

remarkably well by means of two expressions in the

form of the Churchill–Usagi equation that incorporate

nine arbitrary coefficients and seven arbitrary exponents.

The predictions of the two equations of Churchill and

Zajic, which incorporate no explicit empiricism other

than one exponent, were shown to agree almost exactly

with this empirical representation of experimental data.

This great functional as well as numerical improvement

is a primarily a consequence of the recognition that the

analogy of Reichardt for energy and momentum trans-

fer, when re-formulated in terms of asymptotic expres-

sions for Nu, obviates the need for a correlating

equation. This indirect comparison with the experimen-

tal data is a necessary but of course not a sufficient test

of accuracy because of the considerable scatter of the

experimental data. Accordingly a further test in terms

of parametric sensitivity has been carried out by Chur-

chill et al. [19].

The predictive equations of Churchill and Zajic, to-

gether with the numerically computed values of Nu0
and Nu1 and a theoretical expression for Nu11, have al-

ready been demonstrated graphically in Parts II and

III to represent the computed values of Nu for annuli

for all thermal boundary conditions, all values of the as-

pect ratio ai/ao, and all values of ðaþo � aþi Þwi almost per-

fectly as a function of Pr/Prt. There is, however, a price

to be paid for the improvement in numerical accuracy,

functional accuracy, and scope associated with these

predictive equations. If they are to be used to predict

Nu for specified values of Re, Pr, and ai/ao, it is neces-

sary to have supplementary correlating equations for

Nu0 and Nu1 as a function of Re and ai/ao for each ther-

mal boundary condition, as well as one for Prt as a func-

tion of Pr. Furthermore, since Nu0 and Nu1 are based on

the difference between the temperature of one of the

walls and the mixed-mean temperature of the fluid, sep-

arate values are required for each wall that is heated or

cooled. The development and testing of such supplemen-

tal expressions is described in the following two

subsections.
2.4. Generalization of the dependence of Nu0 and

Nu1 on Re and ao/ai

The numerical calculations for Nu were carried out

for a series of fixed values of ðaþo � aþi Þwi and ai/ao. How-

ever, the correlating equations for Nu0 and Nu1 for each

heated or cooled surface would normally be applied for

fixed values of Re ¼ 2ðuþmÞwmðaþo � aþi Þwiðswm=swiÞ
1=2

, and

on theoretical grounds those for Nu1 in terms of Nu1i/

Re(fwi/2) and Nu1o/Re(fwo/2). Hence it is necessary to

be able to interrelate Re, ðaþo � aþi Þwi, swo/swi, swm/swi,
ðuþmÞwm ¼ ðfwm=2Þ1=2, fwi, and fwo. A set of algebraic

equations for these various quantities for all conditions

is developed in Part I [1] as well as a tabulation of a suf-

ficient set of values for these variables for the conditions

of the numerical computations.

Without any justification other than simplicity, the

correlating equations for Nu0 and Nu1/Re(f/2) were

formulated as the product of two terms, one for the sec-

ond-order dependence on Re and the other for the

dependence on ai/ao. This allowed a correlative equation

to be devised for the dependence on Re for ai/a0 = 1.0,

and then one for the dependence on a1/a. Very simple

expressions of the generic form z = [A + Bxn]m, usually

with m = 1, were utilized for both of these components.

Such a simple scheme proved satisfactory because of the

limited ranges of variation of Nu0 and Nu1/Re(f/2). The

second-order dependence of both Nu0 and Nu1 on Re

was actually expressed in terms of ðuþmÞwm, because it

has a more limited range of values.

2.5. Generalization of Nu for different thermal

boundary conditions

Superposition is a well-known mathematical tool that

is applicable to convective heat transfer insofar as the

equation for the conservation of energy is linear in tem-

perature. A linear dependence on temperature is inher-

ent in fully developed laminar convection insofar as the

physical properties are invariant and viscous dissipation

is negligible, and superposition has often been applied.

Superposition has also been applied for fully developed

turbulent convection, but often without careful assess-

ment of the restriction of linearity, in particular with

respect to the possible dependence of the turbulent

Prandtl number on the temperature field. Kays [20] con-

cludes, on the basis of two independent sets of experi-

mental data, and despite the compelling contrary

evidence of Abbrecht and Churchill [10], that the turbu-

lent Prandtl number is different for uniform and isother-

mal heating. However, this does not preclude the

application of superposition insofar as those conditions

are treated separately. In any event, the model used for

the numerical computations whose results are examined

herein was linear in temperature, so superposition is

applicable insofar as the model is valid.
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The simplest form of superposition is for the overall

Nusselt number based on the total heat input and the

difference between the arithmetic average of the wall

temperatures and the mixed-mean temperature, namely,

Num � 2ðao � aiÞðjiai þ j2oaoÞ
kðao þ aiÞ ðTwiþTwoÞ

2
� Tm

h i ¼ 2jave
ji
Nui

þ jo
Nuo

. ð2Þ

Here, jave = (jiai + joa0)/(ai + ao), ji is the heat flux density

on the inner surface of radius ai, jo is the heat flux den-

sity on the outer surface of radius ao, Nui is the Nusselt

number for heat transfer to the fluid based on the heat

flux density ji from that wall to the fluid and the differ-

ence between the temperature of the outer wall and the

mixed-mean temperature of the fluid, namely,

Nui � 2ðao�aiÞji
kðT i�TmÞ, and Nuo � 2ðao�aiÞjo

kðT o�TmÞ is its analog for the

outer wall. Nui is influenced by the heat flux, if any, to

or from the outer wall because of the influence of the lat-

ter on Tm, and Nuo is similarly influenced by the heat

flux, if any, on the inner wall. Attention herein is focused

on Nui and Nuo rather than on Num because the coeffi-

cients for a single surface are more simply related to

the fluid mechanics, the aspect ratio, and the thermal

boundary conditions.

The simplest but most important expression for the

application of superposition for an annulus is

Nui ¼
NuiHA

1� a joao
jiai

� � . ð3Þ

Here, the subscript HA designates uniform heating on

one wall only. Eq. (3) is presumed on the basis of its der-

ivation to be applicable for all values of joao/jiai and

therefore may be considered to generalize a solution

for one set of boundary conditions for all others of the

same class, such as those involving uniform heat fluxes

on the two surfaces. With the subscripts o and i, in-

verted, Eq. (3) is applicable for the outer wall. For fully

developed laminar convection, the derivation of an exact

numerical value or theoretical expression for the influ-

ence coefficient a that is independent of Re. and of course

Pr may be possible. For example, for uniformly heated

parallel plates, a = 7/26. Eq. (3) is also applicable for

fully developed turbulent convection but then a is a
Table 1

Useful relationships for superposition

NuHH ¼ NuHA

1� a
; NuHC ¼ NuHA

1þ a
; NuHC ¼ 1� a

1þ a

� �
NuHH

a ¼ 1� NuHA

NuHH

¼ NuHA

NuHC

� 1 ¼ NuHH � NuHC

NuHH þ NuHC

1

Nu
¼ 1þ joao

jiai

� �
1

NuHA

� j2ao
j1ai

� �
1

NuHC

¼ i
NuHA

� joao
jiai

i
NuHC

� 1

NuHA

�
2

Nu
¼ 1þ joao

jiai

� �
1

NuHH

� 1� joao
jiai

� �
1

NuHC

¼ � 1

NuHC

� 1

NuHH

� �
þ jo

j

function of Re, Pr, and ai/ao. However it can be applied

for specific values of Pr, and therefore may be applied

separately for Nu0 and Nu1.

Numerical values of a can be determined from

numerically computed values of Nu for two different

modes of heating, that is for two different values of

joao/jiai, for otherwise identical conditions. It follows

that numerical values of a may be calculated from any

numerical pair of values of the quantities NuHA, NuHH,

and NuHC, and in turn the third of these three. Here the

subscripts HH designates uniform equal heat fluxes on

the two surfaces, and HC uniform equal heating and

cooling. Some useful relationships between a, NuHA,

NuHH, and NuHC are listed in Table 1 together with

expressions for Nu as a function of NuHA, NuHH, NuHC,

and joao/jiai. From these expressions, it is apparent that

numerical values or correlating equations for any two

quantities such as a, NuHA, NuHH, and NuHC, are suffi-

cient to predict Nui or Nuo for any combination of uni-

form heating and cooling on the two surfaces of an

annulus. The choice of a as one of the two variables

for tabulation and correlation appears to be advanta-

geous on the basis of its more constrained range of val-

ues. Kays and Leung [21], in the only extensive prior

numerical investigation of turbulent convection in ann-

uli, chose NuHA as the second variable, but NuHH, and

NuHC both appear to have equal merit.

The influence coefficient a, as well as NuHA, NuHH,

and NuHC, are functions of the same variables as Nu,

that is of a1/a2, ðaþ2 � a1Þw1, the direction of heat transfer

(inward or outward), and Pr. However, as mentioned in

connection with Nu, only the values of a, NuHA, NuHH,

and/or NuHC for Pr = 0 and Prt need be determined.

Correlating equations for a, NuHA, and NuHH, as well

as tests of their success follow.

2.6. Correlating equations for uniform heating and

cooling and their evaluation

On the basis of superposition and the framework

of the predictive equations of Churchill and Zajic,

only eight correlating equations, four for each surface,

are necessary for a complete representation for all
�
ao

iai

1

NuHC

þ 1

NuHH

� �



Table 2

Correlating equations for Nu0, Nu1, and a

Nu0iHA ¼
5.872 1þ 0.08

ðai=aoÞ2

� �
1þ 0.8

uþmð Þ
wm

1=3

Nu0oHA ¼ 5.568 1þ 0.002 uþm
� �

wm

h i
1� 072 1� ai

ao

� �4=3
" #

Nu1iHA ¼
Re 1þ 0.288 ai=aoð Þ0.28
� �

1.288 uþm
� �2

wm

swm
swi

� �
1þ 53.3

uþmð Þ
wm

� �3
 !1=10.6

Nu1oHA ¼
Re 1þ 0.152 1� ai

ao

� �4� �

uþm
� �2

wm

swm
swo

� �
1þ 53.3

uþmð Þ
wm

� �3
 !1=10.6

a0i ¼ 0.3922þ
uþm
� �

wm

358.6

 !
0.162þ 0.838

ai
ao

� �1=3
 !

a1i ¼ 0.0643þ 2.745

uþm
� �

wm

 !
0.237þ 0.763

ai
ao

� �1=2
 !

a0o ¼ 0.3922þ
uþm
� �

wm

358.6

 !
1.64� 0.64

ai
ao

� �7=8
 !

a1o ¼ 0.0643þ 2.745

uþm
� �

wm

 !
1þ 1.180 1� ai

ao

� �1.5
 !

Nu0TT ¼ 12

1þ 1.08
uþmð Þ0.394

Nu1TT ¼ Reðf =2Þ

1þ 110

uþmð Þ5=2
� � ¼ 4bþ

uþm 1þ 110

uþmð Þ5=2
� �

a0T ¼ 0.4076þ 0.00225uþm; a1T ¼ 0.0675þ 3.012

uþm

Supplementary expressions and notes:

(1) uþm
� �

wm
¼ 3.2þ 1

0.436 ln aþ2 � aþ1
� �

wm

n o
� 275

aþ
2
�aþ

1ð Þ
wm

.

This expression was devised in terms of uþm and a+ for a round

tube, but was found to provide a very good approximation

for ðuþmÞwm for all values of ai/ao. It is applicable in terms of Re

and fwm as well because ðuþmÞwm ¼ 2
fwm

� �1=2
and Re ¼ 2ðaþ0 �

aþi ÞwmðuþmÞwm.

(2) swm
swi

¼ ao
ai
� 1

� �
a0
ai

� �2
� 1

� �	
and swm

swo
¼ ao

ai
ao
ai
� 1

� �	

ao
ai

� �2
� a0

ai

� �2� �
, with a0

ai
¼

1þao
ai

ao
ai

� �0.386

1þ ao
ai

� �0.386 .

These expressions for swm/swi and swm/swo are exact but that for
a0/ai has empirical roots (see [1]).

3064 B. Yu et al. / International Journal of Heat and Mass Transfer 48 (2005) 3057–3072
combinations of uniform heating and cooling of annuli,

for example, a0iHA, a1iHA, a0oHA, a1oHA, Nu0iHA, Nu1iHA,

Nu0oHA, and Nu1oHA. Correlating equations for these

particular eight quantities are presented in Table 2,

along with expressions for the only other quantities or

their equivalents that occur in the these eight correlating

equations, namely ðuþmÞwm as a function of ðaþo � aþi Þwn,
and swm/swi, swm/swo, and ðuþmÞwm as functions of ai/ao.

Tests of the individual success of the correlating

equations in reproducing the numerically computed val-

ues are presented in Tables 3–10, and of their combined

success in reproducing the numerically computed values

of Nu0iHH, Nu1iHH, Nu0oHH, Nu1oHH, Nu0iHC, Nu0oHC,

Nu0iHC, and Nu1iHC in Tables 11–18. Somewhat simpler

expressions of equivalent accuracy in place of the com-

bination of correlations for NuHA and a could undoubt-

edly be constructed for each of these latter 8 quantities,

but the lesser number of correlating equations appears

to more than compensate.

All of the numerically computed values of Nu except

for a few bordering conditions for which the results were

suspect are tabulated in Parts II and III. The missing

values correspond to one or more of the following: (1)

the computed value of Re was less than the presumed

minimum value for fully developed turbulence, (2) the

derived values of the matching coefficient of the two

parts of the differential model were suspect in value, or

(3) the convergence of the numerical computations for

the time-averaged velocity distribution with grid-size

was suspect. The comparisons of the computed and pre-

dicted values of Nu in Tables 3–18 are, in the interests of

avoiding unnecessary detail, for arbitrarily selected val-

ues of ai/ao and selected values of ðaþo � aþi Þwi in the

range from 500 to 20,000. This lower limit corresponds

roughly to the value of 300, below which the semi-loga-

rithmic expression for the velocity distribution, which ef-

fects the correlating equations for ðu0v0Þþ, no longer has

any region of validity, while 20,000 represents the

approximate upper limit of practical interest, corre-

sponding to Re � 106. The predictive equations may be

reasonably accurate for some of the missing conditions

in Tables 3–18, or for ai/ao < 0.01 but there is no reliable

criterion for their evaluation for these conditions. The

values predicted by the correlating equations are en-

closed in parentheses for identification. The overall

accuracy of the predictions is satisfactory. That for

Nu0 is generally better than for Nu1, primarily because

of its more limited range in magnitude. Significant devi-

ations are identified by bold face, which is applied to

both the computed and predicted values because in some

cases the computed values appear to violate trends with

ai/ao and ðaþo � aþi Þwi, and therefore may be the source of

the discrepancy. As would be expected, the questionable

values generally occur for the same conditions in all of

the tables.



Table 3

Computed and predicted values of Nu0iHA

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.8 0.999

800 17.20 11.55 8.324 6.303 5.874 5.772

(18.01) (11.69) (8.107) (6.168) (5.849) (5.771)

1000 52.28 17.20 11.55 8.345 6.310 5.884 5.784

(52.19) (18.04) (11.71) (8.118) (6.177) (5.875) (5.779)

5000 17.19 11.54 8.351 6.337 5.927 5.853

(18.21) (10.85) (8.178) (6.221) (5.899) (5.820)

20,000 11.53 8.348 6.348 5.946 5.860

(11.84) (8.213) (6.248) (5.924) (5.845)

Table 4

Comparison of predicted and computed values of a0i

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 0.2150 0.2485 0.2882 0.3549 0.4429

(0.2077) (0.2434) (0.2884) (0.3661) (0.4428)

1000 0.1535 0.2153 0.2495 0.2892 0.3565 0.4454

(0.1512) (0.2085) (0.2443) (0.2894) (0.3675) (0.4444)

5000 0.2176 0.2526 0.2929 0.3632 0.4582

(0.2139) (0.2503) (0.2969) (0.3766) (0.4553)

20,000 0.2537 0.2943 0.3658 0.4644

(0.2554) (0.3025) (0.3840) (0.4642)

Table 5

Comparison of computed and predicted values of Nu0iHH

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 21.91 15.37 11.72 9.770 10.36

(22.81) (15.52) (11.50) (9.875) (10.36)

1000 61.77 21.92 15.39 11.74 9.805 10.43

(61.70) (22.84) (15.54) (11.52) (9.903) (10.40)

5000 21.97 15.44 11.81 9.951 10.77

(23.01) (15.68) (11.66) (10.08) (10.69)

20,000 15.45 11.83 10.01 10.94

(16.79) (11.77) (10.22) (10.91)
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Because of the choice of such a simple form for cor-

relation in the interests of convenience and transpar-

ency, the application of the correlating equations for

NuHA and a is not recommended for prediction for val-

ues of a1/a2 below 0.01, which is the lower limit of the

numerical computations, or for Re > 106 which is their

upper limit, but these are not serious restrictions from

a practical point of view.
2.7. Generalities with respect to the correlating

equations for uniform heating and cooling

Several generalities concerning the above correlating

equations may be inferred from the equations summa-

rized in Table 2 or from physical considerations.

For example, it may be noted that Nu0iHC = 4.0 corre-

sponds to pure thermal conduction because as Pr ! 0,



Table 6

Computed and predicted values of Nu0iHC

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 14.16 9.243 6.457 4.652 4.001

(14.96) (9.443) (6.354) (4.581) (4.000)

1000 45.33 14.15 9.239 6.473 4.652 4.001

(45.49) (14.96) (9.438) (6.351) (4,580) (4001)

5000 14.12 9.214 6.569 4.649 4.001

(14.90) (9.399) (6.325) (4.566) (3.999)

20,000 6.450 4.647 4.003

(6.302) (4.552) (3.992)

Table 7

Computed and predicted values of Nu1iHA

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 72.24 66.80 63.29 62.53 64.54

(72.41) (68.2) (65.3) (64.5) (64.6)

1000 116.0 89.64 82.56 77.89 76.69 79.02

(107.1) (88.33) (83.3) (79.7) (78.0) (79.0)

5000 445.9 381.7 348.1 337.1 345.1

(382.3) (361) (346) (340) (345)

20,000 1275 1221 1247

(1252) (1229) (1249)

Table 8

Comparison of predicted and computed values of a1i

ðaþ2 � aþ2 Þw1 ai/ao

0.01 0.05 0.1 0.2 0.5 0.8 0.999

800 0.08569 0.1060 0.1303 0.1694 0.1974 0.2153

(0.0898) (0.1046) (0.1256) (0.1676) (0.1980) (0.2151)

1000 0.04762 0.08071 0.1014 0.1265 0.1658 0.1937 0.2115

(0.0688) (0.0877) (0.1021) (0.1223) (0.1639) (0.1937) (0.2105)

5000 0.04128 0.07534 0.1067 0.1470 0.1720 0.1874

(0.0767) (0.0895) (0.1078) (0.1441) (0.1704) (0.1852)

20,000 0.05625 0.09446 0.1353 0.1569 0.1703

(0.0821) (0.0989) (0.1325) (0.1566) (0.1702)
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molecular transport becomes dominant relative to tur-

bulent transport, and Prt !1.

From physical considerations, the correlating equa-

tions for ao and ai, as well as those for Nui and Nuo,

must converge to the same value as ao/ai ! 1. The de-

crease in Nu with decreasing ai/ao for inner heating

and the opposite trend for outer heating, may be ex-

plained qualitatively on the basis of the increasing and
decreasing areas for heat transfer, respectively, that is,

in terms of the change in 2prL. Except in a few in-

stances, the computed values of a1o decrease monotoni-

cally with increasing values of Re and decrease

monotonically with increasing values of ai/ao. The in-

stances of non-monotonic and thereby somewhat ques-

tionable behavior, were ignored in the process of

constructing the correlating equations.



Table 9

Computed and predicted values of Nu1iHH

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 79.01 74.72 72.77 75.28 82.25

(79.85) (76.2) (74.7) (76.7) (82.3)

1000 121.8 97.51 91.88 89.17 91.93 100.2

(115) (96.82) (92.7) (90.9) (93.3) (100.1)

5000 456.1 412.8 389.7 395.2 424.7

(414.1) (396) (388) (397) (423)

20,000 1408 1412 1503

(1390) (1416) (1506)

Table 10

Computed and predicted values of Nu1iHC

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 66.54 60.40 55.99 53.48 53.11

(66.66) (61.8) (58.0) (53.58) (53.18)

1000 110.7 82.94 74.96 69.14 65.78 65.23

(100) (81.5) (75.5) (71.1) (65.74) (65.27)

5000 428.2 355.0 314.5 293.9 290.6

(356) (331) (312.6) (292) (291)

20,000 1367 1165 1076 1065

(1205) (1140) (1071) (1068)

Table 11

Computed and predicted values of Nu0oHA

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 5.384 5.405 5.456 5.609 5.771

(5.376) (5.405) (5.460) (5.605) (5.771)

1000 5.381 5.403 5.423 5.471 5.643 5.783

(5.455) (5.383) (5.411) (5.466) (5.611) (5.777)

5000 5.494 5.566 5.546 5.686 5.833

(5.424) (5.453) (5.507) (5.854) (5.828)

20,000 5.548 5.583 5.715 5.855

(5.486) (5.541) (5.688) (5.856)
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The computed values of Nu1oHH for ai/ao = 0.999

were observed to be nearly equal to those of Yu et al.

[12] for a uniformly heated round tube. This agreement

is inexplicable on the basis of the integral formulation

for Nu1 but seems to be too good to be a mere coinci-

dence. Such behavior is understandable for Pr > Prt in

consideration of the identical dependence of Nu11 on

Re for all shear flows in the equation of Churchill and
Zajic, as is the failure of this agreement to extend to

small values of Pr because Nu0 for a round tube differs

greatly from that for a parallel-plate channel. Since the

characteristic length in Re and Nu is taken here to be

the hydraulic diameter, it may be concluded from these

observations that the hydraulic diameter concept is

applicable as a good approximation for turbulent con-

vection in annuli, including the limiting cases of a round



Table 12

Computed and predicted values of a0o

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 0.6923 0.6830 0.6562 0.5659 0.4430

(0.7032) (0.6869) (0.6561) (0.5715) (0.4432)

1000 0.6997 0.6978 0.6882 0.6610 0.5701 0.4461

(0.7198) (0.7058) (0.6897) (0.6585) (0.5736) (0.4448)

5000 0.7221 0.7104 0.6820 0.5877 0.4589

(0.7234) (0.7065) (0.6748) (0.5878) (0.4555)

20,000 0.7198 0.6914 0.5955 0.4643

(0.7205) (0.6881) (0.5993) (0.4647)

Table 13

Computed and predicted values of Nu0oHH

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 17.55 17.50 17.05 15.87 12.92 10.36

(18.84) (18.11) (17.25) (15.84) (13.08) (10.36)

1000 17.92 17.88 17.39 16.14 13.08 10.44

(19.05) (18.29) (17.42) (15.88) (13.16) (10.41)

5000 20.00 19.70 19.01 17.44 13.79 10.78

(20.58) (19.61) (18.58) (16.94) (13.71) (10.68)

20,000 20.91 20.49 19.80 18.09 14.13 10.93

(22.10) (20.88) (19.63) (17.76) (14.20) (10.94)

Table 14

Computed and predicted values of Nu0oHC

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 3.158 3.181 3.212 3.284 3.582 3.999

(3.117) (3.159) (3.204) (3.297) (3.556) (3.998)

1000 3.116 3.183 3.212 3.294 3.582 3.999

(3.115) (3.155) (3.203) (3.295) (3.556) (3.998)

5000 3.205 3.192 3.219 3.294 3.528 3.999

(3.106) (3.177) (3.195) (3.298) (3.560) (3.998)

20,000 3.273 3.213 3.226 3.301 3.581 3.998

(3.099) (3.140) (3.189) (3.282) (3.557) (3.998)
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tube and a parallel-plate channel, only for values of

Pr P Prt.

The near equality of the values of Nu for a parallel-

plate channel and a round tube for PrP Prt. suggests

the possibility that, by analogy to ðuþmÞwm and despite

the lack of a theoretical explanation in either case, a

near-invariance might exist for intermediate values of
ai/ao. The numerically computed values of Nu1oHH in

Table 17 do show some sign of convergence to the

same value for ai/ao ! 0 as for ai/ao = 1, but the inter-

mediate values are much greater. Because this compar-

ison was necessarily for fixed values of ðaþo � aþi Þwi,
supplementary numerical computations were carried

out by iteration for a single fixed value of



Table 15

Computed and predicted values of Nu1oHA

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 50.49 57.17 59.90 61.93 64.03 64.54

(50.34) (57.98) (60.16) (61.17) (63.60) (64.62)

1000 61.14 69.98 73.20 75.77 78.33 79.01

(61.29) (75.30) (73.30) (74.69) (77.79) (79.00)

5000 260.5 311.1 320.2 328.8 339.8 344.9

(275.4) (305.2) (318.5) (324.5) (338.2) (344.7)

20,000 879.8 1064 1162 1182 1220 1245

(1153) (1111) (1151) (1173) (1191) (1248)

Table 16

Computed and predicted values of a1o

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.8 0.999

800 0.3738 0.4555 0.4326 0.3940 0.3034 0.2440 0.2155

(0.4873) (0.4610) (0.4387) (0.4001) (0.3059) (0.2381) (0.2152)

1000 0.4205 0.4609 0.4163 0.3830 0.2975 0.2397 0.2115

(0.4551) (0.4502) (0.4288) (0.3915) (0.2992) (0.2329) (0.2106)

5000 0.3502 0.2356 0.3139 0.3255 0.2635 0.2123 0.1877

(0.4004) (0.3940) (0.3780) (0.3438) (0.2631) (0.2050) (0.1853)

20,000 0.6732 0.3583 0.2345 0.2867 0.2413 0.1934 0.1706

(0.3679) (0.3606) (0.3447) (0.3156) (0.2412) (0.1883) (0.1703)

Table 17

Computed and predicted values of Nu1oHH

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 80.63 105.3 105.4 102.2 91.92 82.27

(98.19) (107.5) (107.1) (102.1) (89.11) (82.34)

1000 105.5 123.6 125.4 122.8 111.5 100.2

(116.8) (128.6) (128.5) (122.8) (107.9) (100.2)

5000 400.9 407.0 466.7 487.5 461.4 424.6

(467.8) (504.9) (510.1) (494.4) (446.5) (423.1)

20,000 2692 1658 1518 1567 1608 1501

(1839) (1742) (1756) (1714) (1571) (1504)
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Re = 37,600. The monotonic increase in Nu1oHH with

decreasing values of ai/ao, as shown in Table 19, is

very disappointing and implies that the near-coinci-

dence of these limiting values has no obvious

applicability for correlation or generalization for

0 < ai/ao < 1.

The quantitative effect on Nu1i of heat transfer to or

from the outer surface, as calculated from the correlat-
ing equations Nu1iHA and a1i, is illustrated in Table 20

for ai/ao = 0.2 and 1.0. The values of Nu1i for �joao/

jiai = 0.05, 0.10, 0.2, and 1.0 are intended to simulate

the effect of heat losses of 5%, 10%, 20%, and 100%. It

may be noted that the net rate of heating of the fluid,

which is represented by Nu1i, is reduced far less percent-

age-wise. Similar affects would be expected for other val-

ues of Pr.



Table 18

Computed and predicted values of Nu1oHC

ðaþo � aþi Þwi ai/ao

0.01 0.05 0.1 0.2 0.5 0.999

800 36.47 39.28 41.74 44.44 49.13 53.01

(33.84) (39.68) (41.81) (43.67) (47.36) (53.17)

1000 43.05 48.80 51.68 54.78 60.37 65.21

(41.54) (48.77) (51.36) (53.67) (58.19) (65.25)

5000 192.9 251.8 243.7 248.1 268.9 290.5

(195.1) (219.6) (231.4) (241.4) (260.4) (290.5)

20,000 525.8 783.4 941.1 919.1 983.6 1064

(840.6) (818.7) (855.6) (891.8) (959.2) (1067)

Table 19

Variation of Nu1oHH with a1/a2 for Re = 37,600

ai/ao 0.01 0.05 0.1 0.2 0.5 0.8 0.9 0.999

Nu10HH 152.3 144.8 141.0 132.3 114.2 104.6 102.2 100.2

Table 20

Effect of outer heat transfer on inner heat transfer as characterized by Nu1iHA

ðaþo � aþi Þwi a1i Nu1iHA Nu1iHH �jiai/joao = 1.0 0.2 0.1 0.05

ai/ao = 0.2

800 0.1303 63.29 72.77 55.99 61.68 62.47 62.88

1000 0.1265 77.89 89.17 69.14 75.97 76.92 77.40

5000 0.1067 348.1 389.7 314.5 340.8 344.4 346.2

ai/ao = 1.0

800 0.2154 64.54 82.26 53.1 61.87 63.18 63.85

1000 0.2115 79.02 100.2 65.22 75.81 77.38 78.19

5000 0.1876 345.0 424.7 290.5 332.5 338.6 341.8

20,000 0.1704 1246 1502 1055 1205 1225 1235

Table 21

Computed and predicted values of Nu0TT and Nu1TT

2b+ 1000 1600 2000 4000 10,000 20,000

Nu0TT-comp 8.953 9.023 9.050 9.119 9.188 9.233

Nu0TT-pred 8.952 9.007 9.032 9.100 9.180 9.233

Nu1TT-comp 99.14 150.9 184.0 344.9 793.4 1496

Nu1TT-pred 99.55 151.2 184.6 344.8 793.2 1496

Table 22

Predicted and numerically computed values of a0 and a1 for isothermally heated parallel plates

2b+ 1000 1600 2000 4000 10,000 20,000

Re 37,220 63,400 81,460 176,300 483,700 1,032,000

a0-comp 0.4498 0.4540 0.4555 0.4595 0.4634 0.4659

a0-pred 0.4498 0.4524 0.4537 0.4574 0.4623 0.4659

a1-comp 0.2281 0.2200 0.2186 0.2056 0.1926 0.1838

a1-pred 0.2283 0.2186 0.2146 0.2035 0.1915 0.1838
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Table 23

Predicted and numerically computed values of Nu0TA and Nu1TA

2b+ 1000 1600 2000 4000 10,000 20,000

Nu0TA-comp 4.926 4.927 4.928 4.929 4.930 4.031

Nu0TA-pred 4.026 4.932 4.934 4.937 4.936 4.932

Nu1TA-comp 76.53 117.7 144.5 274.0 640.6 1221

Nu1TA-pred 76.83 118.1 145.0 274.6 641.4 1221

Table 24

Comparison of numerically predicted values of Nu1ðT 1�T 2Þ and Nu1THC

2b+ Re4b Nu1ðT 1�T 2Þ Nu1HC

Danov et al. Herein Danov et al. Herein

1000 37,116 37,220 65.74 65.64

1600 63,400 101.3

2000 81,248 81,460 124.8 124.6

4000 176,300 237.3

20,000 1,029,440 1,032,000 1070 1069
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2.8. Correlating equations for isothermal heating of

parallel-plate channels

There are three thermal boundary conditions involv-

ing isothermal surfaces that result in fully developed

convection in an annulus, firstly, uniform equal temper-

atures on the two surfaces, here designated by NuTT, sec-

ondly, a uniform temperature on one surface and perfect

insulation on the other, here designated by NuTA, and

thirdly, unequal uniform temperatures on the two sur-

faces, here designated as NuHC. As implied by this nota-

tion, the latter condition results in a uniform heat flux

across the channel and no longitudinal development in

the temperature of the fluid. As such, it has already been

treated. (See the values for ai/ao in Tables 6, 10, 14, and

18.) On the other hand, the first and second conditions

both result in a longitudinal development in the temper-

ature of the fluid and can be related to one another

through an influence coefficient. This influence coeffi-

cient is an alternative variable for correlation in place

of NuTA or NuTT, just as with uniform heating, but, by

contrast has no other utility.

The numerical computations for NuTA and NuTT re-

quire iteration because the integrand of the integral

expression for the total local heat flux density incorpo-

rates the temperature distribution. As a result of the

greatly increased computational demands as well as

the very limited practical interest in these conditions,

the numerical computations for these two quantities

were limited to a parallel-plate channel.

Rather than devise correlating equations for Nu0TA
and Nu1TA directly, as was done for their counterparts

for uniform heating, correlating equations were instead,
in the interests of illustrating an alternative approach,

devised for Nu0TT and Nu1TT, and for the values of a0
and a1 as determined from the numerically computed

values of Nu0TA and Nu0TT, and Nu1TA and Nu1TT,

respectively. These four expressions are included in

Table 1. The ‘‘asymptotic’’ value of 12 for the hypothet-

ical case of uþm ! 1 in the correlating equation for

Nu0TT may be recognized as the theoretical value for

fully developed convection in plug flow in a uniformly

heated parallel-plate channel, but the dependence on

uþm is purely empirical. (The corresponding value of 8,

which may be recognized as solution for convection in

plug flow in a uniformly round tube, would have ap-

peared in the correlating for Nu0oHH if it had been devel-

oped directly.) These two values are artifacts of the

integral formulations for Nu0 just as Re(f/2) is for Nu1.

The predictions of the correlating equations and the

numerically computed values for a0, a1, Nu0TT, and

Nu1TT are observed in Tables 22 and 23 to be in almost

perfect agreement, as are those for Nu0TA and Nu1TA, as

determined by superposition, in Table 24. A reexamina-

tion of the predictions in Tables 3–18 for ai/ao = 0.999

reveals similar agreement and indicates that it only the

dependence on a1/a2 that is predicted somewhat

uncertainly.

As mentioned previously, Nu1HC (for equal uniform

heating and cooling) and Nu1ðT 1�T 2Þ (for heat transfer be-

tween isothermal surfaces at different temperatures) are

equivalent on conceptual grounds. This equality is con-

firmed in an operational sense in Table 24 in which the

values of Nu1ðT 1�T 2Þ computed by Danov et al. [22] are

seen to agree within round-off error with computed val-

ues of Nu1HC from the current investigation. Since
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Nu0ðT 1�T 2Þ and Nu0THC are equal to exactly 4.0, the value

for pure thermal conduction across a slab of width 2b, a

correlating equation is unnecessary for either Nu or a.
3. Summary and conclusions

Predictive equations for Nu for both surfaces have

been developed for all combinations of uniform heating

and cooling in circular concentric annuli of all aspect ra-

tios for all values of Re in the fully turbulent regime and

all values of Pr. Predictive equations are also included

for parallel-plate channels with all combinations of uni-

form wall temperature. These predictive equations are

summarized in Tables 1 and 2. No further information

is required for their quantitative application. They are

called predictive in that they were constructed without

direct reference to experimental data. These expressions

appear somewhat formidable at first glance, but this a

necessary price for the inclusion of so many independent

variables and parameters.

Tables 3–24 provide tests of the limits of applicability

of the predictive equations and their accuracy within

these limits. The numerical calculations of this overall

investigation and prior ones rather than experimental

data are used as a criterion. However, the numerical cal-

culations of this overall investigation have already been

validated by comparisons with experimental data in Yu

et al. [2,3].

The success in devising such comprehensive, accu-

rate, and relatively simple predictive equations is a con-

sequence of utilizing the generalized correlating

equation of Churchill amd Usagi [7], the analogies de-

vised by Churchill and Zajic [16], and the principle of

superposition, as validated herein for turbulent convec-

tion in annuli.
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